General First-Order Linear Differential Equations

Terms/Phrases/Symbols to Know: Standard Form ($\frac{d y}{d x}+P(x) y=Q(x)$), Bernoulli Equations

Standard Form of a First-Order Linear Differential Equation

where P \& Q are continuous functions of x .

Solution to a First-Order Linear Differential Equation

$$
y e^{\int P(x) d x}=\int Q(x) e^{\int P(x) d x} d x+C
$$

with an integrating factor of $u(x)=e^{\int P(x) d x}$ proof?

Tip: rather than memorizing the formula above, remember that multiplication by the IF $e^{\int P(x) d x}$ converts the left side of the DE into the derive of the product $y e^{\int P(x) d x}$.

Ex. Find the general solution of $x y^{\prime}-2 y=x^{2}$

Ex. Find the general solution of $y^{\prime}-y \tan t=1,-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$

A type of Non-Linear Differential Equation: A Bernoulli Equation and its general solution

$$
y^{\prime}+P(x) y=Q(x) y^{n}
$$

Ex: Find the general solution of $y^{\prime}+x y=x e^{-x^{2}} \cdot y^{-3}$

Ex: A cylindrical tank contains 50 gallons of a solution that is 90% water and 10% alcohol. A second solution that is half water and half alcohol is added to the first tank at a rate of four gallons per minute. As the solution is being added, the original tank is being drained at the rate of 5 gallons per minute. Assuming the solution in the tank is stirred constantly, how much alcohol is in the tank after 10 minutes?

Ex: An object of mass m is dropped from a hovering helicopter. Find its velocity as a function of time t , assuming that the air resistance is proportional to the velocity of the object.

